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Hence the total capacitance C= of the system in the s plane in

terms of the radii of the small semicircles in thes plane is

c= = ; {log [2(F – 1)/1] – log 6s} (7)

since Sr = 2s6s.

By definition, the even-mode fringing capacitance, CJ=”, is

given by the limiting value of C. – CPA – CP~, where CPA and

CP~ are the parallel-plate capacitances associated with the gaps

BI and B2 of Fig. 1. In [1], CfO” was defined as CO – CPA – CP~

and, since the formulas for the parallel-plate capacitances are

rather involved, it is convenient to express Cf ~“ in terms of Cf ~“.

Thus

c“=f= Cfo” -1- Ce – co. (8)

From [1, eq. (12)]

co = ~ {2 log (!J – X) – log (5L – log 6V}. (9)

Now 6,u and dv are obtained from & with the help of (l). After

differentiating, it is found that

and

~v = (v – /.?)’ as

y(rx – ~) “

Then from (7) and (9)

CO– Ce=#{log (l–k2sn2asn2d) –210g(ksnd)

(lo)

Fig. 1. Post-type oscillator and its equivalent circuit.

– log
2(P – 1) _ log (L - D)(V - /.0 . ~12)

1 y(a – ~) )

(11)

‘pfly”
This expression, together with [1, eq. (13)], in view of (8) gives

the desired formula for C~e”.
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An Analytical Comparison of Two Simple High-Q

Gunn Oscillators

IAN D. HIGGINS ANo ROBERT DAVIES

Mrsfract—This note compares and analyzes two commonly used
simple waveguide Gunn oscillators in terms of their loaded Q-factors.

Suitable design criteria are established for both, and two oscillators
which were tested conformed well to these. It is concluded that although
the more mechaaieally complex oscillator, which is in common use, has a

greater flexibility, the simpler oscillator is adequate for most applications.

I. INTRODUCTION

The Gunn diode is a simple two-terminal device which, when

mounted in a resonant circuit and biased with a suitable dc

potential, generates microwave power. The basic noise and sta-
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Fi~. 2. Iris-coupled oscillator.

bility properties of the device are modified by the loaded Q-factor

(QJ of the resonant circuit and for many applications a desirable

value of Q= is between 200 and 1000. Resonant circuits, or

cavities, for this purpose are usually made from simple wave-

guide and Figs. 1 and 2 show two common types. The purpose

of this short paper is to analyze the critical design aspects of

these cavities and to determine if either has any basic advantages.

The oscillator shown in Fig. 1 has been previously studied [1]

and there are many commercial samples of this type. It consists

simply of a post-mounted Gunn diode spaced a half wavelength

from a short circuit.

The. seeond oscillator, which is mechanically more complex,

consists of a Gunn post assembly mounted between a simple

inductive (i.e., circular hole) iris and a waveguide short circuit,

Fig. 2. There are also many oscillators of this design commercially

available and it is commonly supposed [2] to have advantages

over the more simple post-coupled oscillator.

Although the two oscillators appear simple in construction,

the analyses are complex. A numerical analysis of the post-

mounting structure was given by Eisenhart and Kahn [3] in

1971, and this analysis is used for final evaluation of both

oscillators. However, a more basic analytical approach is

adopted in this short paper in order to give a meaningful com-

parison of the two cavities. The simplified analysis is only

concerned with the circuit external to the post since complex

effects of the post are the same for both circuits. In this respect

it differs from the analysis of White [4] and leads to simple

expressions for the oscillators’ Q-factors. The interface reference

plane is at the waveguide/post junction YP representing the

admittance seen by the “Gunn-package-post.” The equivalent
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circuits of Figs. 1 and 2 are therefore only for the circuit external

to the complex post.

The Q-factor of the simple post-coupled oscillator is initially

related to the waveguide short-circuit position, while that of the

iris-coupled oscillator is related to the normalized iris suscep-

tance. It is then shown that the loaded Q-factor of (each can be

related to the reflection coefficient of the Gunn post assembly

and that both oscillators degenerate to the same case.

The results of the analysis show that for most applications the

mechanically simpler mount is equal in performance to the iris-

coupled type. However, the iris-coupled type is more adaptable,

and the use of the simple post-coupled type is restricted to the

Gunn device because the Gunn diode is capable of generating

near-optimum output power into a wide range of impedances.

II. ANALYSIS OF THE POST-MOUNTED C.4vmY

For the purpose of this analysis the equivalent circuit depicted

in the inset of Fig. 1 is used. The Gunn device, together with the

post and package is represented by a parallel combination of a

susceptance and a negative conductance shunting the waveguide.

The short-circuited lossy line, representing the waveguide,

presents an admittance G~,c + jB at the post terminals, where

G–
YO sinh 2alP

(la)
‘Ic – cosh 2ci1P – COS2~1P

B=
YOsin 2~lP

cosh 2cdP – COS 2/31P

the waveguide characteristic admittance;

loss/unit length of the waveguide;

distance between the short circuit and the post;

the waveguide phase constant.

(lb)

The susceptance B(oJ) of the short circuit, the conductance Gs,c,

and the load conductance YO, are connected in parallel across

the post, and the load admittance terminating the post is Gs,c +

YO + jB(co). Hence we can calculate the loaded Q-factor by the

relationl

aB((r))QL .&!&= a _
2(G~,c + YO) L%O ‘

But the waveguide unloaded Q-factor, QU, can also be defined

from aB(myam, as

al aB(co)
Qu. ——

2Gslc am “
Hence

QL = QuG~,c

(Gs,c + Yo)

and substituting (1) into (2)

QU sinh 2alP

‘L = [exp (2aZP) - cos 2/lIP] ‘

(2)

(3a)

Ignoring dispersion effects in the waveguide, i.e., 1,, = AO, then

asa+O

~L–g!&L Colp

smz Dl

()

~
(3b)

2C sin2
a.

10000

QL

100:

lo- t 1
0999 0990 090

21P
kg

o

Fig. 3. Loaded Q-factor Q~ of the post-coupled oscillator as a function of
short-circuit pos~tion. normalized to half the operating wavelength, Ag,
with the wavegulde unloaded Q-factor Q. as a parameter.

since

Qu .:.&,
9

The dependence of QL upon cavity length as defined by (3)

is illustrated in Fig. 3. It is significant that, for high Q operation,

the distance 1Pbetween short circuit and post should be close to

Lg/2.

III. ANALYSIS OF THE IRIS-COUPLED OSCILLATOR

For the analysis of this oscillator the equivalent circuit depicted

in the inset of Fig. 2 is used. In the oscillator considered, the short

circuit is positioned a quarter wavelength from the post and

presents an open circuit in the plane of the post and does not

therefore enter the high Q-analysis. The inductive iris positioned

between the post and the load can be represented by a shunt

negative susceptance, – Bt [6], and it appears in parallel with

the load conductance Y.. Hence there is a complex admittance

Y. – jBi = YL a distance Ii from the Gunn post. The admittance

presented in the plane of the Gunn post, YD, by the admit-

tance YL is given by

Yp = Y.
YL + Y. tanh yli

=G+jB
Y. + YL tanh ~li

(4)

where y is the complex propagation constant of the waveguide.

It is now possible to calculate the loaded Q-factor from the

expression QL = (co/2G)/(8B/iko) as

QUali

‘L = [al, + (YO/Bi)2 ]

which simplifies to

QL =
Coli

c(Yo/Bi)2

(5)

(6)

if we assume no dispersion and also let a + O. Fig. 4 is a graph

of the oscillator-loaded Q-factor, against the inverse of the

normalized iris admittance squared, ( YO/BJ2, for various wave-

1 Arguments continue concerning the inclusion of an extra factor of 2 in guide unloaded Q-factors (QU). It is assumed that 1, is approx-
this expression [5]. However, to remain consistent with the expressions used
for measuring loaded Q-factor given by Warner and Hobson It has been

imately one-half wavelength long. Fig. 4 indicates that (YO/Bi)

omitted here. must be small to achieve a high loaded Q-factor. This criterion
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Fig. 4. Plot of the iris-coupled oscillator-loaded Q-factor Q= against the
square of the inverse normalized iris susceptance, ( Yo/B,)2 with the
cavity unloaded Q-factor Q. as a parameter.

is equivalent to the requirement that the short-circuit separation

from the Gunn post must approach a half wavelength in the

post-coupled oscillator.

IV. ANALYSES OF BOTH OSCILLATORS USING REFLECTION

COEFFEIENTS

It is obvious that tlie inductive iris with susceptance – Bi is

not a unique means of providing a resonant cavity for the Gunn

post. Alternative techniques could use other iris shapes or

perhaps a metal screw or waveguide-admittance change, pro-

viding that the discontinuity–post distance is appropriately

altered. Such methods provide decoupling of the Gunn post

from the load by reactive mismatching, and the resulting ad-

mittance presented to the post can be characterized by a reflection

coefficient p. The admittance presented to the post in the post-

coupled oscillator can also be represented by a complex reflection

coefficient, p~, and oscillator characterization in terms of reflec-

tion coefficients is therefore a convenient and suitable means of

comparing the two oscillator configurations.

For the simple post-coupled oscillator the admittance pre-

sented to the post terminals is

Y, = Yo(l – j cot /?lp)

which is comprised of a lossless waveguide with a short-circuit

termination in parallel with the waveguide load, Therefore

(YCI – b)

‘“ = (Y. + Y.)

and

(7)

the magnitude of the reflection coefficient transferred from the

iris to the post is given by

lpPl = lpPl exp (-2a0

An arbitrary phase angle # is assumed for the reflection

coefficient at the post which, when expanded as a normalized

impedance, includes two series-real terms. These terms are

related to the cavity loss and the waveguide load. The power

distribution between cavity loss (P=J and load (PJ is given by

the expression

Pabs &li\Pi12
—.
Pavai, 1- lPd2 + ~~4Pi12

where P,Vail = total power generated = PL + P,b,, Now the

oscillator-loaded Q-factor may be defined [8] as

~= _ QUPabS

Pavail

and assuming no dispersion, then

Iim I QL =
0.)li21pi\2

a+ o C(1 – Ipi\z) 4
(9b)

For high Q operation it is necessary for the magnitude of the

reflection coefficient to approach unity, and (9a) and (9b)

simplify to

QL =
2oJl

C(I – IPP12)
(9C)

since Ipil = IPP[, when a = O.

Hence we have identical Q-factors for the oscillators if 1, = li.

For the post-coupled oscillator 1P ~ n&/2 as IPPI + 1. ln

practice, in order to avoid multiple resonances, the n = 1, lg/2

solution for 1Pis used. For the iris-coupled oscillator, it can be

shown that because the iris is a shunt-mounted element, as

LIpil -+ 1 then p, + 180°. It then follows that similar admittances

are presented to the post terminals in both the iris-coupled and

the post-coupled cases if li ~ nlg/2. In practice, therefore,

1P & Ii E lg/2 and (9c) becomes, for both oscillators

2R

QL= (1- lp#)‘ (9d)

This equation relates the loaded Q-factor QL to the admittance

presented at the post terminals in terms of the modulus of

reflection coefficient only.

At the post terminals the load is defined as YP = G + jB
which equals – Y~, the admittance presented by the Gunn.

Therefore, to oscillate with a given Q-factor both the load and

the Gunn device must present appropriate admittances at the

post terminals, and the ability of the Gunn to provide this is the

prime limitation to the loaded Q-factor, Once this admittance is

defined, circuits which provide an appropriate load will auto-

matically have the required Q-factor. The next section concerns

the admittance ranges available with the two simple oscillators.

(1 - IPP12) V. PRACTICAL OSCILLATORS
(8)~in2 ~lP = (l + 31PP12.)“

The foregoing analyses assumed a constant negative conduc-

Thus from 3(b) tance and susceptance representation of the Gunn diode and

QL = Colp(l + 3jp12) post at the post terminals. In practice, this is not strictly true

2C(1 – Ipp]z)
(9a) but the -assumption is valid providing that the Q-factor of the

Gunn post Qp is smaller than Q~. The calculations of the Gunn

For the iris-coupled oscillator we have a discontinuity due to post impedance in Table I confirm that this condition is satisfied.
the iris a distance li from the Gunn post. Defining this as a However, the post and device packaging influence the oscillator

reflection coefficient pi and relating it to the oscillator Q-factor, behavior in the following two ways.
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TABLE I
CALCULATED POST-TERMtNAL ADMITTANCES, LOADED Q-FACTORS,

AND POST Q-FACTORS FOR VARIOUS POST DIAMETERS
IN w@18 AT 11.6 GHz

6

6

6

5

5

5

4

4

4

3

3

3

2

2

2

Diode chip
negative resistance

rtg m)

-1oo

-300

-moo

-1oo

-3@3

-1OOO

-100

-300

-1OQO

-1oo

-309

-mm

-1oo

-300

-mm

‘OSt t eminal
ndmit~ance

:Iy + jB&
0 0

20.86 31.13

11.30 36.o6

-3.65 39.04

,27.32 22.37

16.79 b4.74

-5.57 49.94

.45.29 11.08

.70.13 71.24

.35.93 125.9

.23.41 -24.7o

.16.93 -46.77

-5.86 -53.05

-3.38-12.53

-1.32-13.86

-0.41 -14.04

—-—-
Post

Q-f actor

~(.~~]

—-

0.25

4.1

16

0.5

3.8

11

0.2

0.02

15

0.1

4

17

1.4

5.2

17

Post
)-factor

:&:f;

63

196

652

68

210

712

72

221

746

75

226

764

73

227

766

Firstly, there is a phase change between the negative resistance,

or active part of the Gunn diode and the post terminals, which

means that in practice measured post to obstacle distances differ

slightly from the distances calculated using (4) to (9).

Secondly, modification of the post dimensions cam alter the

negative terminal conductance at the Gunn post and thus enable

the Gunn device to work into a range of admittances.

An additional and larger variation of terminal impedance is

also available because the Gunn diode is capable of providing

near-optimum output power into a large range of working

impedances. For example, a CXY19 commercial Chtnn diode

measured by Gough [7] gave 184 mW of power with a negative

conductance of 3 mS and 220 mW with G~ = – 10 m% Copeland

[9] predicted similar variations in a computer simulation. This

property of variable negative conductance for only a small 10SS

of output power enables the Gunn post-terminal admittance to

cover a large range of admittances. This is shown clearly in

Table I. The post-terminal admittances at 11.6 GHz in Table I

were derived using the analysis of Eisenhart and Kahn [3] and

packaged Gunn-diode measurements of Gough [711. Only the

post diameter was varied because of practical considerations of

heat sinking the diode to the waveguide wall and avoiding oscil-

lator harmonics exciting higher order waveguide modes.

Conjugate admittances of Table I are plotted on the Smith

chart of Fig. 5 with superimposed constant Q-factor circles.

It can be seen that a large range of admittances can be catered

for by varying the Gunn-diode post diameter or the Gunn-diode

negative resistance. Thus the post-coupled oscillator which has

an admittance locus YO(l + jll) can provide oscillators with

QL = 315 for a 2-mm post to QL = 652 for a 2.5-mm post

while maintaining a near-optimum output power, since the

Constant conductance

m

0.-100 .. -300 ● .-1000

Fig, 5. Conjugate past-terminal impedances for various post diameters
with R~, the Gunn-diode resistance as a parameter, and the constant
Q-factor circles on a Smith chart normalized to 10 Yo.

negative-diode chip resistance only varies from – 300 to

– 1000 Q. An experimental oscillator built with a 2.2-mm post

diameter had a Q-factor of 500 and 100-mW output power at

11.6 GHz with a CXY19 Gunn diode. These data agreed well

with the predicted data from the analysis.

An iris-coupled oscillator can match any post-terminal ad-

mittance, and a cavity was constructed to oscillate at 11.6 GHz

with a Q-factor of 625 using a 4-mm diameter post. An output

power of 90 mW at 11.5 GHz was obtained experimentally with

a Q-factor of 600 with an iris susceptance of – 20% located

0.46 Ig from the Gunn post terminals. This result confirmed the

design procedure but the iris-to-post distance was slightly in

error since post thickness effects were ignored [6]. The design

procedure also indicated that the Gunn-diode negative suscep-

tance required, if a 4-mm post was used in a post-coupled cavity,

was too low (<< 1 mS) to provide usable output power and this

has also been experimentally confirmed.

VI. CONCLUSIONS

The design and analysis of two simple waveguide oscillators

has been described. The two oscillators are shown to be equiv-

alent but the iris-coupled type has shown greater flexibility in

design. However, in practice it has been seen that the flexibility

of the Gunn device in providing near-optimum output power

over large working impedance ranges enables the simpler post-

coupled oscillator to produce a similar performance to that of the

iris-coupled oscillator. The Q-factor can be varied in the post-

coupled oscillator by adjustment of the post diameter and short-

circuit position. In the iris-coupled oscillator it is achieved by

varying the iris hole size and compensating with cavity length or

post diameter changes.

Since the Q-factor, and hence the “performance,” of the

oscillator is related to the reflection coefficient at the post termi-

nals, the performance is independent of the cavity used providing

the post admittance can be matched. It is therefore concluded

that while the iris-coupled oscillator has greater flexibility, the
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cheaper construction of the post-coupled

adequate.
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Radiation Losses of Planar Circuit Resonators and

the R/Q Parameter

F. W. SCHOTT, SENIORMEMBER,lEEE AND
TARO YODOKAWA, MEMBER, IEEE

Abstract—The resonator parameter R/Q, the ratio of a shunt

resistance to the unloaded Q, which might be termed a “mode-geometry”

parameter, is a natural parameter for characterizing oscillation modes of
planar-circuit resonators which are opeu circuited at the edges. These

resonators are often excited by connection at the edge to a microstrip

transmission line, and the appropriate shunt resistance is the equivalent
resistance at resonance at these terminals for that mode.

Losses in planar-circuit resonators include the ohmic (skin-effect and

dielectric) losses of enclosed resonators PIUSa radiation-loss component.
For a variety of planar resonators, the ohmic losses are easily calculated,
but the radiation-loss determination is a difficult boundary-value problem.
More specifically, the determination of either the unloaded Q or the

radiation component of the unloaded Q is often readily accessible only
through measurement. The knowledge of the R/Q parameter allows one,
in effect, to replace the Q measurement with a shunt-resistance measure-

ment, which is often more expedient to perform.
Two simple planar-resonator configurations, the circular disk, and the

square plate are stndied. The radiation component of the Q is evaluated

by using the measured shunt resistance and the R/Q parameter to cal-
culate the total unloaded Q and thence the radiation component of the
unloaded Q. A comparison is made between these results and those
obtained from direct Q measurements.

INTRODUCTION

The direct calculation of radiation loss from planar circuits is

an extremely difficult boundary-value problem. Radiation from

microstrip can be treated by regarding the strip as a line source of

current [1] and an extension of this approach has been used [2];

however, even the simplest planar resonator, the circular disk,

is not amenable to this approach. Alternative routes toward a

solution of the problem of losses in open resonators will be useful.
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THE GEOMETRICAL CAVITY FACTOR R/Q

Resonators having a Q, which is sufficiently large so that the

configuration of the electromagnetic field is substantially the

same as in the absence of losses, can be chara@erized by a ratio

of a shunt resistance to a Q which is essen~’~ally geometrical,

i.e., it is independent of cavity losses [3]. In the case of an open-

circuited planar resonator it is convenient to define the shunt

resistance in terms of the voltage at the point at which it will be

excited by connection to a microstrip line, typically at the edge

of the resonator. Thus, if the total time-average power dissipa-

tion due to conductor losses, dielectric losses, and radiation

losses is P and the peak amplitude of the voltage at the excitation

point is V, the shunt resistance is

1/2

R=~.
2P

The unloaded Q is

Q=~o$

(1)

(2)

where U is the energy stored in the cavity and P is the previously

mentioned power dissipation at resonance; whence

V2
R/Q=—.

2caou
(3)

This is a result which is dependent on the mode type but inde-

pendent of losses as long as they do not cause significant modifi-

cations to the spatial distribution of the fields within the cavity. It

is valid for any planar configuration, whether it is open circuited

or short circuited at the edges of the plane, to the extent that

edge effects represent a small perturbation to the otherwise

known field distribution.

For a cavity for which the shunt resistance can be measured

and the right-hand side of (3) can be calculated, the Q can then

be found and, if the Q for conductor loss and dielectric loss can

be determined by other means, the radiation loss can be found

from the fact that

1 1 1 1
—. —+—
Q Qcmcr. loss + Qdiel. loss Qract. lcm “

(4)

Examples

The preceding approach can be readily used with open-

circuited planar resonators of simple geometrical configuration.

1) Circular Disk: One such resonator is the circular disk which

is illustrated in a cross-sectional view in Fig. 1. In the dominant

mode, it contains an electric field lying in the z direction only and

given by

E= = E. cos q$.ll(kr) (5)

where r and ~ are the usual circular cylindrical coordinates.

The open-circuit edge condition requires that ~1 ‘(ka) = O or

ka = 1.841, hence the edge voltage V = EobJl(l.841). There are

two components of the magnetic field, H+ and H,, which are not

needed for (3) but are needed to separate the losses into their

components. The energy stored in this mode is obtained by

integrating the energy density +sIEI 2 over the cavity volume and

gives the result

U = E02 ~ &ba2
(’ -F3J’2(ka’

whence

R ka
V-

~=z a(ka)z–l

(6)

(7)


